SERIAL INTERFACE MANUAL

Sound Level Meter NL-22 / NL-32

3-20-41 Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan http://www.rion.co.jp/

Organization of the NL-22 / NL-32 Documentation

The documentation for the Sound Level Meter NL-22 / NL-32 consists of three separate manuals.

Instruction Manual

Describes operating procedures for the Sound Level Meter NL-22 / NL-32, connection and use of peripheral equipment such as a level recorder and printer, and use of the memory card.

• Serial Interface Manual (this document)

Describes how to use the serial interface built into the Sound Level Meter NL-22 / NL-32. The manual covers the communication protocol, use of control commands for the sound level meter, format of data output by the sound level meter, and other topics.

• Technical Notes

This document provides in-depth information about the circuit configuration and performance of the sound level meter, microphone construction and characteristics, influence of extension cables and windscreen on the measurement, and other topics.

* Company names and product names mentioned in this manual are usually trademarks or registered trademarks of their respective owners.

Organization of This Manual

This manual describes how to use the serial interface built into the Sound Level Meter NL-22 and NL-32. Besides the RS-232-C serial interface standard, the unit also supports USB. However, correct operation in combination with other USB devices is not assured. If possible, you should avoid connecting other USB devices at the same time.

The manual is divided into four chapters. Chapter 1 covers points that are common to the RS-232-C and USB interface. Chapter 2 contains information for users of the RS-232-C interface. USB users need not read this chapter. Chapter 3 contains information for users of the USB interface. RS-232-C users need not read this chapter. Chapter 4 explains the interface commands. This chapter is for users of either interface. You should read the explanation for the commands that operate the functions you want to use.

Chapter 1 General Information

This chapter contains information that applies both to the RS-232-C and USB interface. (\rightarrow P1)

Chapter 2 RS-232-C

This chapter explains connection to a computer and transfer principles using the RS-232-C interface. (\rightarrow P21)

Chapter 3 USB

This chapter explains connection to a computer and transfer principles using the USB interface. $(\longrightarrow P27)$

Chapter 4 Commands

This chapter explains the commands used to control the NL-22 or NL-32. Information is given about command format, functions, and other relevant points. (\rightarrow P47)

Contents

Organization of the NL-22/NL-32 Documentation i
Organization of This Manual iii
Chapter 1 General Information
Outline
Local Mode/Remote Mode
Transfer Codes
Transfer Format
ID Number
ATTR Block Attribute7
BCC Block Check Code
Block Reception Processing
Command Types
Error Processing9
Flow Control10
Transfer Sequence
Communication Cutoff
Power Save Mode
Power Off
Auto Shutdown
Rated Values
Chapter 2 RS-232-C
Connection to a Computer
Transfer Protocol

Chapter 3 USB	27
USB	
Connection to a Computer	29
Operating Environment	30
Installing the USB Driver	31
Before starting	31
Installation procedure	
Connection check	35
Uninstalling	
ActiveX Control	
Installing and uninstalling ActiveX control	
Module names	
Interface table	
Properties explanation	39
Method explanation	42
Event explanation	43
Constant definition	44
Usage examples	44
Chapter 4 Commands	47
Commands	48
Command List	48
Command Format	52
Command Send Example	54
Command Description	55
Examples for Control Via External Commands	83

Chapter 1 General Information

Contents

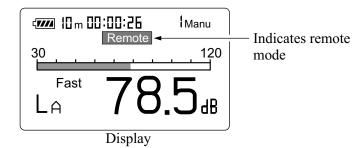
Outline	-
Local Mode / Remote Mode	
Transfer Codes	ŀ
Transfer Format	,
ID: ID Number6)
ATTR: Block Attribute7	,
BCC: Block Check Code7	1
Block Reception Processing)
Command Types8	\$
Error Processing9)
Flow Control10)
Transfer Sequence12)
Communication Cutoff)
Power Save Mode19)
Power Off19)
Auto Shutdown19)
Rated Values)

Outline

The Sound Level Meter NL-22 and NL-32 incorporate a serial interface. This interface allows the use of a computer to make measurement parameter settings and to control the measurement. It is also possible to send measurement results (current results as well as data stored in the memory of the sound level meter) to the computer for further processing.

Local Mode / Remote Mode

Operation mode	Key operation	Communication
Remote	Disabled	Enabled
Local	Enabled	Enabled


Local mode

In this mode, the NL-22 / NL-32 is operated with the controls on the unit. This is the default mode after power-on.

Communication can also be carried out.

Remote mode

In this condition, the controls on the unit are inactive, and the unit only carries out communication with the computer. The indication "Remote" appears on the display.

Remote mode/local mode switching

Switching between local mode and remote mode is carried out by a command.

Key operation in remote mode

Only the power key is active. All other keys are disabled.

Transfer Codes

The following codes are used for communication with the unit.

Code	Hex notation	Meaning
<enq></enq>	05н	Enquire
<ack></ack>	06н	Acknowledge
<nak></nak>	15н	Not acknowledge
<stx></stx>	02н	Start block
<etx></etx>	03н	End block
<cr></cr>	0Dн	Terminator (1st character)
<lf></lf>	ОАн	Terminator (2nd character)
	1Ан	Stop
<dc3></dc3>	13н	Pause
<dc1></dc1>	11н	Restart

Control codes

Special codes

ATTR	Control code or special code	Block attribute
ID	01н to FFн	Other / own station ID
BCC	00н to FFн	Block check code

Commands, parameters, data

ASCII codes 20H to 7EH

Transfer Format

Comman	d blo	ock:	Comm	and from co	mputer				
<stx></stx>	ID	ATTR	Command	Parameter	<etx></etx>	BCC	<cr></cr>	<lf></lf>]
1	1	1	М	Ν	1	1	1	1	byte
* ATTR =	= 'C'								
If ther	e are	e two or	more param	eters, they a	re separ	rated by	y single	spaces	5.
Data resp	oonse	e block:	Data fr	om sound le	evel met	er (res	ponse d	lata in A	ASCII)
<stx></stx>	ID	ATTR	Respon	se data	<etx></etx>	BCC	<cr></cr>	<lf></lf>	
1	1	1	Ν	J	1	1	1	1	byte
* ATTR =									
			more data, t	• •			nas.		
Acknowl	ledgr	nent blo	ock: Compu	iter or sound	l level n	neter			
<stx></stx>	ID	ATTR	<etx> BCC</etx>	C <cr> <l< td=""><td>.F></td><td></td><td></td><td></td><td></td></l<></cr>	.F>				
1	1	1	1 1	1	l byte	;			
* ATTR =	= <a< td=""><td>CK></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	CK>							
Negative	Ack	nowled	gment block	: Compu	iter or so	ound le	evel me	ter	
<stx></stx>	ID	ATTR	Error	code	<etx></etx>	BCC	<cr></cr>	<lf></lf>	
1	1	1	4		1	1	1	1	byte
* ATTR = <nak></nak>									
Verify other station block: Computer									
<stx> ID ATTR <etx> BCC <cr> <lf></lf></cr></etx></stx>									
1	1 1 1 1 1 1 byte								
* ATTR = <enq></enq>									
a .									
Stop requ	lest (code: C	omputer						
1	1								
Pause request with X parameter control: Computer									
<dc3></dc3>									
1									
Restart request with X parameter control: Computer									
<dc1></dc1>									
1									

ID: ID Number

Outline

When multiple units are connected, ID numbers are used to distinguish between individual units. The ID number range is 1 to 255 (01H to FFH). Numbers are expressed in binary notation. In strings sent out by the computer, the ID selects the unit to be controlled. In strings sent out by the sound level meter, the ID identifies the data source.

Broadcasting

In commands sent from the computer, the ID 00 has a special meaning. It selects all units (broadcast command).

Sound level meter response

The sound level meter responds only to a communication block that contains its own ID. Other blocks are disregarded.

When the ID is 00 (zero), setting commands are processed but no response is returned. Request commands are not processed and no response is returned.

ATTR: Block Attribute

The block attribute information is added by the sender, to facilitate processing of the block at the receiving end.

<stx></stx>	ID	ATTR	<etx></etx>	BCC	<cr></cr>	<lf></lf>	
1	1	1	1	1	1	1	byte
* ATTI	$R = \langle SU \rangle$	JB>					

BCC: Block Check Code

The BCC is calculated by the sender. The receiver applies checksum processing to the same range to verify the block.

Calculation range:	From STX to ETX
Calculation method:	Exclusive OR sum of range

If the computer sends a block where BCC is set to 00H (NULL), the sound level meter omits block check processing.

This is to allow simple sending from the computer.

Block Reception Processing

For reception processing, the unit is initially in the <STX> wait (standby) mode, except during a sequence while waiting for response from the computer. In the idling state, any data received by the sound level meter except for <STX> are disregarded.

Command Types

There are two types of commands: setting commands and request commands.

Setting command

This type of command serves for changing the sound level meter status or measurement parameters. Only some commands of this type will produce a response from the sound level meter. The response consists of status information returned after the setting command has been processed.

Request command

This type of command serves for getting information about unit settings and for obtaining measurement data including display data and stored data. The sound level meter returns the requested data.

Error Processing

Transmission errors

Transmission errors can be detected in the following categories.

Error item	Contents	Processing
Framing error	Character level framing error	Disregard character and wait for next character
Block reset	<stx> received after incomplete block (excluding ID number)</stx>	Start block again from that point

Command processing errors

Block format is correct, but command interpretation or processing has resulted in an error.

Error item	Contents	Processing
Undefined command	Command problem	Return error code 0001
Parameter error	Parameter number or value not correct	Return error code 0002
Processing error	Processing cannot be carried out in current state	Return error code 0003
Processing timeout	Timeout interval has elapsed	Return error code 0004

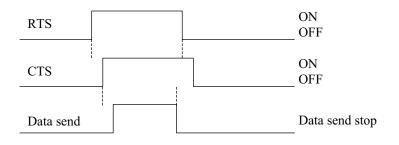
Flow Control

The sound level meter implements X parameter and RTS / CTS flow control. When XON = 1, the X parameter is used to perform control. When XON = 0, RTS / CTS is used to perform control.

X parameter control mode

In the send sequence for multiple blocks, the next block is sent after the computer returns an acknowledge code.

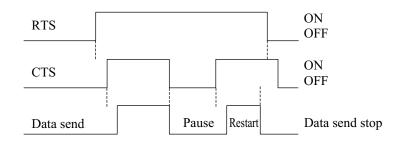
To interrupt, restart, or stop the transfer, the respective code must be sent from the computer.


RTS / CTS control is not possible.

RTS/CTS control mode

Send

To send data, the sound level meter sets RTS to ON, waits until CTS becomes ON, and then sends the data.


Immediately after sending the data, the sound level meter sets RTS to OFF.

When the computer sets RTS to OFF (CTS at sound level meter becomes OFF), sending is interrupted immediately.

Because RTS / CTS control is hardware control, sending can be interrupted also midway in a block.

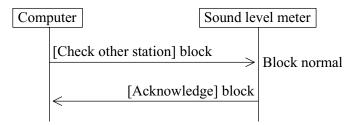
Sending is not resumed until the computer sets RTS to ON (sound level meter CTS becomes ON).

Receive

The sound level meter constantly monitors CTS. CTS = ON while sending is not in progress means that there is a send request from the computer. The sound level meter then sets RTS to ON.

Because no provision is made for receive overflow at the sound level meter, a send request from the computer (sound level meter CTS = ON) always triggers RTS = ON. The sound level meter is always ready for receiving.

When this mode is used, X parameter control is not available.


Transfer Sequence

The transfer sequences are as follows. [Check other station] sequence [Setting command without response] sequence [Setting command with response] sequence [Request] sequence [Continuous request] sequence [Error] sequence

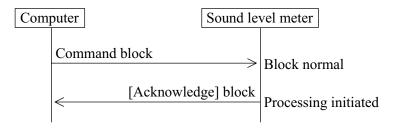
The setting sequence can be selected to have a response or not. The sample sequences shown below generally assume that the block from the computer comprises the ID of the sound level meter.

[Check other station] sequence

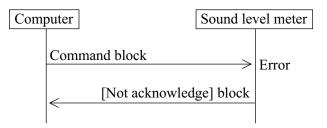
An acknowledge block is returned in response to the [check other station] block. This is an independent sequence. It does not need to come before a command sequence.

[Setting command without response] sequence

This type of command is executed without producing a response. Because it corresponds to an error code request, the processing result (including error) of the last command is retained.

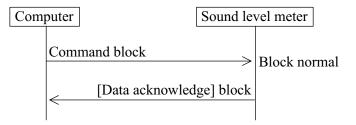

The "RET0" command activates this sequence.

Execute processing

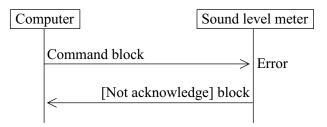

[Setting command with response] sequence Normal processing

An [acknowledge] response is returned after command processing was initiated. "Initiated" means that for example execution of the "Store" command was started. It does not mean that the store process was completed.

Error processing


When an error has occurred during block or command processing, a [not acknowledge] response is returned.

The "RET1" command activates this sequence.

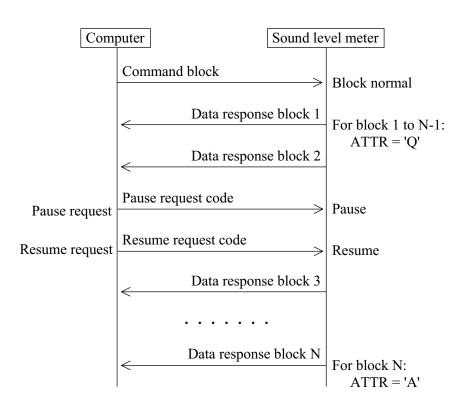

[Request] sequence (1 block) Normal processing

A response is returned immediately to the request command.

Error processing

When an error has occurred during block or command processing, a [not acknowledge] response is returned.

[Request] sequence (multiple blocks) X parameter flow control


Normal processing

In general, there is no need for returning response codes from the computer. The sound level meter sends blocks continuously.

The computer can send a pause request code to pause the transmission, a resume code to resume the transmission, or a stop code to stop the transmission. The sound level meter disregards any other codes that are received. (Processing is not carried out also after stop.)

When sending a pause or stop code to the sound level meter, wait until the current block has been fully sent. (Do not send a pause or stop code in the middle of a block.)

After the last block has been sent or after stop mode was entered, the sound level meter goes into the idling state.

RTS / CTS flow control

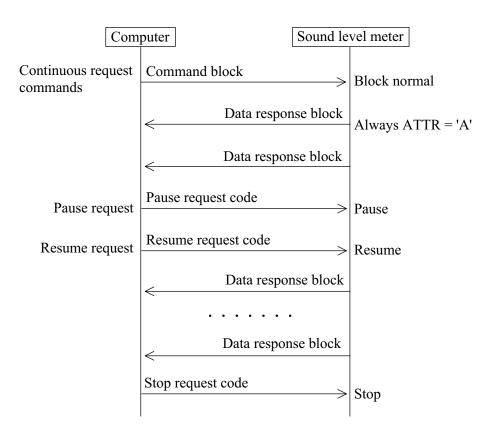
When the computer sets RTS to OFF (CTS at sound level meter becomes OFF), sending is interrupted immediately.

Because RTS / CTS control is hardware control, sending can be interrupted also midway in a block.

Sending is not resumed until the computer sets RTS to ON (sound level meter CTS becomes ON).

Continuous request sequence

This sequence uses only commands to periodically request measurement data.


X parameter flow control

In general, there is no need for returning response codes from the computer. The sound level meter sends blocks periodically.

The computer can send a pause request code to pause the transmission, a resume code to resume the transmission, or a stop code to stop the transmission. The sound level meter disregards any other codes that are received. (Processing is not carried out also after stop.)

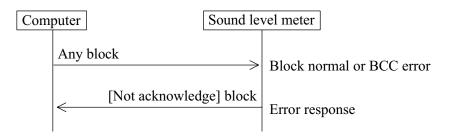
When sending a pause or stop code to the sound level meter, wait until the current block has been fully sent. (Do not send a pause or stop code in the middle of a block.)

After the stop mode was entered, the sound level meter goes into the idling state.

RTS / CTS flow control

When the computer sets RTS to OFF (CTS at sound level meter becomes OFF), sending is interrupted immediately.

Because RTS / CTS control is hardware control, sending can be interrupted also midway in a block.


Sending is not resumed until the computer sets RTS to ON (sound level meter CTS becomes ON).

While interrupted, periodic data do not accumulate, but are overwritten.

Error response

When an error has occurred at the block level, the following error sequence occurs.

After an error response, the unit returns to the idling state and does not continue to send multiple blocks etc.

Communication Cutoff

Power Save Mode

When power save mode is enabled, the unit enters the sleep state after the current block has been sent. In the sleep state, the sound level meter does not send or accept commands.

Power Off

During power off processing, communication is terminated after the current block was sent.

Auto Shutdown

Same as power off.

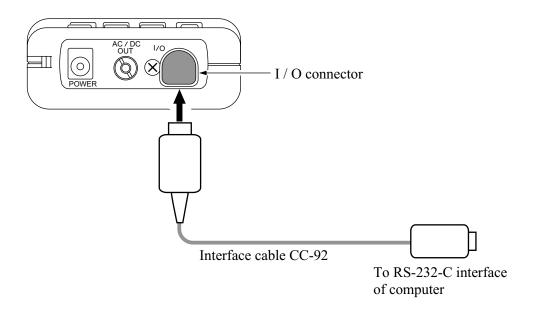
Rated Values

Guaranteed Values

Case	Rated Values	Remarks
Sound level meter response time	Max. 3 s	Processing timeout error response if due to processing reasons
Send character interval	Max. 100 ms	_
Time interval from end of sending data until start of idling state	Max. 200 ms	_

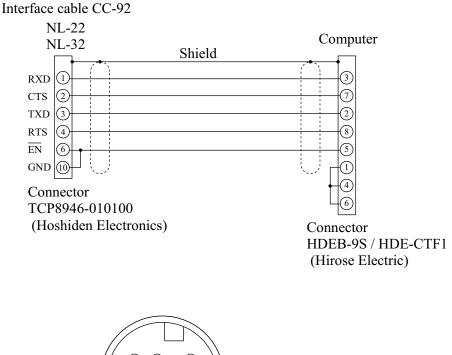
Rated Values

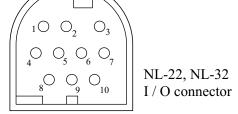
Case	Rated Values	Remarks
Multiple block request sequence ACK wait	10 s	Pause sequence and go into idling state
Send timeout with flow control (except RTS / CTS control)	3 s	Pause sequence and go into idling state
Block generation wait time after receiving <stx></stx>	No limit	_
Receive character interval	No limit	_


Chapter 2 RS-232-C

Contents

Connection to a Computer	
Transfer Protocol	24
Multiple Unit Operation	25


Connection to a Computer


The illustration below shows how to connect the NL-22 / NL-32 to a computer. Use the optional interface cable for this connection.

The CC-92 interface cable uses a 9-pin connector (female). The computer-side connector is a HDE-CTF1 / HDEB-9S (Hirose Electric).

The cable is available as an option.

Transfer Protocol

Transfer principle:	full duplex
Sync principle:	asynchronous
Baud rate:	4800 / 9600 / 19200 bps
Data word length:	8 bit
Stop bits:	1 bit
Parity check:	none
Flow control:	X parameter or RTS / CTS (selectable)
Maximum block size:	256 bytes
Command flow control:	yes / no (selectable)

Multiple Unit Operation

These specifications also include cases where communication includes several sound level meters of the same type or compatible type. The X parameter and stop request code are received without ID by all units, but during a request sequence, only one unit is supposed to be active and all others are in the idling state, so that processing is carried out normally only by one unit.

When multiple units are connected, observe the following points.

- Do not broadcast request commands. These will be disregarded.
- Do not send a request command sequence simultaneously to multiple units. Wait until processing of a request command sequence at one unit has finished before sending other request commands.

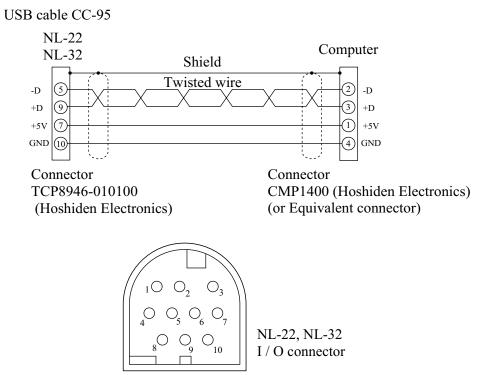
Chapter 3 USB

Contents

USB
Connection to a Computer
Operating Environment
Installing the USB Driver
Before starting
Installation procedure
Connection check
Uninstalling
ActiveX Control
Installing and uninstalling ActiveX control
Module names
Interface table
Properties explanation
Method explanation
Event explanation
Constant definition
Usage examples44

USB

This unit can use a USB connection for operation control and transfer of data. To use the USB interface, the dedicated cable CC-95 is required, and a driver must be installed on the computer.


The command exchange uses ActiveX, and ActiveX must therefore also be installed. All necessary files are contained on the floppy disk supplied with the CC-95. Installation procedures are explained in this manual. The use of multiple USB devices at the same time is not supported.

Connection to a Computer

Connect the I / O port on the bottom of the unit to the USB interface of the computer, using the optional USB cable.

The required USB cable is the CC-95, optional. Drivers and all other required software files are supplied with the USB cable.

Operating Environment

Supported hardware

• IBM PC compatible computer with USB interface

Supported operating systems

- Microsoft Windows 98 Second Edition
- Microsoft Windows 2000
- Microsoft Windows Me

Note

The explanation of the installation procedure assumes that the device driver has been installed from the floppy disk.

Installing the USB Driver

Before starting

The setup procedure differs, depending on the operating system. In each case, power to the sound level meter must be ON.

When using Windows 98

Setup Setup on the computer (for Windows 98) ↓ Connection check (for Windows 98)

Deleting setup information Uninstalling (for Windows 98)

When using Windows 2000

Setup Setup on the computer (for Windows 2000) ↓

Connection check (for Windows 2000)

Deleting setup information Uninstalling (for Windows 2000)

When using Windows Me

Setup Setup on the computer (for Windows Me) ↓ Connection check (for Windows Me)

Deleting setup information Uninstalling (for Windows Me)

Installation procedure

The install procedure of Windows Me and Windows 2000 is same as Windows 98 procedure.

For Windows 98

 Connect the USB cable from the NL-22 / NL-32 to the USB connector of the computer. After a while, the "Add New Hardware Wizard" dialog box appears. Click on "Next".

2. Click on "Search for the best driver for your device. (Recommended)", and click on "Next".

3. Insert the floppy disk with the driver into the computer, click on "Specify a location (L)" to place a check mark in the box, and enter "A:\". Then click on "Next".

Add New Hardware Wiz	ard
	Windows will search for new drivers in its driver database on your hard drive, and in any of the following selected locations. Click Next to start the search. ☐ Eloppy disk drives ☐ CD-ROM drive ☐ Microsoft Windows Update ✓ Specify a Jocation: A:\ ☑ Browse
	< <u>B</u> ack Next > Cancel

4. When the driver file has been found, the dialog box shown below appears. Click on "Next".

5. The installation of the driver is now complete. Click on "Finish".

Connection check

For Windows 98

Open the Device Manager.

Verify that the item "RION NL-22 / 32 USB Driver" appears under "Universal Serial Bus Controller".

System Properties ? 🗙
General Device Manager Hardware Profiles Performance
View devices by type O View devices by connection
Display adapters Floppy disk controllers Hard disk controllers
E
Network adapters Ports (COM & LPT)
En 🏭 Sound, video and game controllers 🏭 Csl4300B Audio Capture/Playback Adapter - Ver 8.62 En 🖳 System devices
E - C Tape drives E - C Universal serial bus controller - C Universal Serial bus controller - C Universal Host Controller
RION NL-22/32 USB Driver
Properties Refresh Remove Print
OK Cancel

For Windows 2000

Open the Device Manager.

Verify that the item "RION NL-22 / 32 USB Driver" appears under "USB (Universal Serial Bus)".

For Windows Me

Open the Device Manager.

Verify that the item "RION NL-22 / 32 USB Driver" appears under "Universal Serial Bus Controller".

Uninstalling

For Windows 98

Connect the NL-22 / 32 USB cable to the computer. Open the Device Manager. Select "RION NL-22 / 32 USB Driver" and click on "Remove".

For Windows 2000

Connect the NL-22 / 32 USB cable to the computer. Open the Device Manager. Select "RION NL-22 / 32 USB Driver" and click on "Remove".

For Windows Me

Connect the NL-22 / 32 USB cable to the computer. Open the Device Manager. Select "RION NL-22 / 32 USB Driver" and click on "Remove".

ActiveX Control

Installing and uninstalling ActiveX control

Installing

Double-click (execute) the file Install.bat in the ActiveX folder on the floppy disk supplied with the CC-95.

Uninstalling

Double-click (execute) the file UnInstall.bat in the ActiveX folder on the floppy disk supplied with the CC-95.

Module names

- Product name: RION NL-22 / 32 USB Component
- File name: RionUsbNL22.ocx
- Object name: UsbControl

Interface table

Properties

-	
ReceiveMode:	Set receive event mode
ID:	Set ID
Attribute:	Set attribute
Data:	Receive data
Data1:	DRD d1 receive data
Data2:	DRD d2 receive data
Data3:	DRD d3 receive data
Data4:	DRD d4 receive data
Data5:	DRD d5 receive data
DataOver:	DRD overrun information
DataUnder:	DRD underrun information
ErrorStatus:	Receive status

Method

Reset:	Reset this control
Send:	Send data

Events

OnReceive:	Indicate data receive event
OnDRDReceive:	Indicate DRD data receive event
OnReceiveDataE	rror:

Indicate receive error event

Properties explanation

Receive Mode

Function:	Set receive event mode
Format:	[form.]UsbControl.Receive [= ReceiveMode]
Setting value:	ReceiveMode sets the following values.
	0: Data receive event mode
	1: DRD receive event mode

ID

Function:	Set ID
Format:	[form.]UsbControl.ID [= ID]
Setting value:	Setting range for ID is 0 to 255

Attribute

Function:	Set attribute for receive data
Format:	[form.]UsbControl.Attribute [= Attribute]
Setting value:	Receive data attribute

Data

Function:	Set receive data
Format:	[form.]UsbControl.Data [= Data]
Setting value:	Response data part in receive data only

Data1

Function:	Set d1 of DRD receive data
Format:	[form.]UsbControl.Data1 [= Data1]
Setting value:	d1 part of DRD receive data

Data2

Function:	Set d2 of DRD receive data
Format:	[form.]UsbControl.Data2 [= Data2]
Setting value:	d2 part of DRD receive data

Data3

Function:	Set d3 of DRD receive data
Format:	[form.]UsbControl.Data3 [= Data3]
Setting value:	d3 part of DRD receive data

Data4

Function:	Set d4 of DRD receive data
Format:	[form.]UsbControl.Data4 [= Data4]
Setting value:	d4 part of DRD receive data

Data5

Function:	Set d5 of DRD receive data
Format:	[form.]UsbControl.Data5 [= Data5]
Setting value:	d5 part of DRD receive data

DataOver

Function:	Set overrun information of DRD receive data
Format:	[form.]UsbControl.DataOver [= DataOver]
Setting value:	Data overrun information of DRD receive data

DataUnder

Function:	Set underrun information of DRD receive data
Format:	[form.]UsbControl.DataUnder [= DataUnder]
Setting value:	Data underrun information of DRD receive data

The default value for Data1 to Data5 is 0. If there are no normal value data for 0.0 to 200.0, 999.9 is set. If analysis is not possible, 888.8 is set.

ErrorStatus

Function:	Set status information for receive data	
Format:	[form.]UsbControl.ErrorStatus [= ErrorStatus]	
Setting value:	One of the following values is set in ErrorStatus.	
	NO_ERROR:	No error has occurred.
	DRD_ANALYSIS_ERROR:	
		DRD analysis failed.
	NO RETURN:	No data were returned for 3 seconds
		after command was received.

Method explanation

Reset

Function:	Initialize this control	
Format:	[Val=][form.]UsbControl.Reset	
Argument:	None	
Return value:	0 = Not completed	
	1 = Reset completed successfully	
	2 = Reset failed	

Send

Function:	Send a command	
Format:	[form.]UsbControl.Send	
Argument:	Attribute + command + parameter	
Return value:	None	

Event explanation

OnReceive

Function:	When data receive event generation mode is set in data
	receive mode properties, receiving data triggers this event.
	Data indicates receive data, and ErrorStatus indicates error
	status.
	When data are received, the following information is given.
	NO_ERROR: No error
Format:	Sub UsbControl_OnReceive()
Argument:	None

OnDRDReceive

Function:	When DRD data receive event generation mode is set in data	
	receive mode properties, receiving data triggers this event.	
	Data1 to Data5, DataOver, and DataUnder indicate receive	
	data, and ErrorStatus indicates error status.	
	When DRD data are received, the following information is	
	given.	
	NO_ERROR: No error	
Format:	Sub UsbControl_OnDRDReceive()	
Argument:	None	

OnReceiveDataError

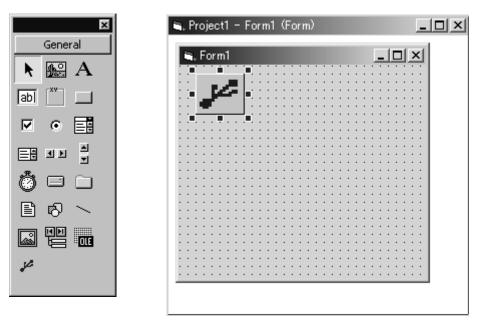
Function:	When DRD data receive event generation mode is set in data receive mode properties, receiving data triggers this event.		
	Data1 to Data5, DataOver, and D		
	data, and ErrorStatus indicates error status.		
	The error status is indicated as follows.		
	DRD_ANALYSIS_ERROR: DRD analysis failed		
	NO_RETURN:	NO_RETURN: No data were returned for	
		3 seconds after command	
		was received	
Format:	Sub UsbControl_OnReceiveDataError()		
Argument:	None		

Constant definition

The following constants are defined for this control as ErrorStatus values.

ErrorStatus

0 : NO_ERROR	: No error has occurred.
-1 : NO_RETURN	: No data were returned for 3 seconds after
	command was received.
-2 : DRD_ANALYS	IS_ERROR
	: DRD analysis failed.
-3 : NO_CONNECT	ED : The driver is not being installed (NL-22/32 is
	not connected).
-4 : OPEN_ERROR	: Driver open error.
-5 : SEND_ERROR	: Transmitting failed.
-6 : RECEIVE_ERR	OR : Receiving failed.


Usage examples

An example for using this control in Visual Basic 6.0 is shown below.

1. From the main menu, select "Project" - "Component" - "RionUsbNL22 ActiveX control module" to add the component.

Components	X
Controls Designers Insertable Objects	
OptsHold 1.0 Type Library Package and Deployment Wizard RegWizCtrl 1.0 Type Library RionSoundNL22 ActiveX Control Module RionUsbNL22 ActiveX Control Module Shockwave ActiveX Control Shockwave Flash trialoc 1.0 Type Library TSHOOT OLE Control module txtview OLE Control module	
VB 6 Application Wizard VB 6 Data Form Wizard VB 6 MSChart Wizard RionUsbNL22 ActiveX Control Module Location: C:\WINDOWS\RIONUS~1.OCX	Browse
ОК	Cancel Apply

2. From "Toolbox", select RionUsbNL22, and paste it into the form.

3. Enter the following code in the code input window.

Private Sub From_Load() UsbControl1.Reset End Sub

Private Sub Command1_Click() UsbControl1.Send(Text1.Text) End Sub

Private Sub UsbControl1_OnReceive() Dim RecData As String

Label1.Caption = UsbControl1.Data Label2.Caption = UsbControl1.ErrorStates Label3.Caption = Chr(UsbControl1.Attribute) End Sub

Chapter 4 Commands

Contents

Commands	48
Command List	
Command Format	52
Command Send Example	54
Command Description	55
Examples for Control Via External Commands	83

Commands

Command List

No !		Page
sasic se	tting and display commands	
BER	Set data exclusion (back-erase) function	5
BER?	Get data exclusion (back-erase) function setting	5
DPI	Set display of various processing values	5
DPI?	Get display setting for various processing values	5
DSP	Set type of display data	5
DSP?	Get currently displayed processing types	5
LXI	Set percentile level	5
LXI?	Get percentile level settings	5
LYY	Set auxiliary processing type	5
LYY?	Get auxiliary processing type	5
MTI	Set measurement time	5
MTI?	Get measurement time setting	5
RNG	Set level range	5
RNG?	Get level range setting	5
TMC	Set time weighting for main processing	5
TMC?	Get time weighting setting	5
WGT	Set frequency weighting	5
WGT?	Get frequency weighting setting	5

Command	d Function	Page
Operatio	on commands	
PSE	Pause / restart measurement and memory store	60
PSE?	Get measurement and memory store pause status	60
SRT	Start / stop measurement	60
SRT?	Get measurement running status	60
STO	Start memory store	61
STO?	Get memory store running status	61
Memory	and store commands	
ADR	Set address	62
ADR?	Get address setting	62
CDR?	Get remaining card capacity	62
CDV?	Verify whether card is inserted	62
FMT	Delete all files from memory card	63
MDC	Delete manual data from internal memory	63
PLP	Set Auto 1 store cycle	63
PLP?	Get store cycle setting	63
RCL	Activate recall state	64
RCL?	Get recall state	64
SMD	Set memory store format (Manu, Auto1, Auto2)	65
SMD?	Get store name shown on recall menu	65
SNR?	Get store name shown on recall menu	65
SNS	Set store name	66
SNS?	Get store name	66
TMT	Set timer mode time	66
TMT?	Get timer mode time setting	66

Comman	d Function	Page
Calibrat	ion commands	
CAL	Activate calibration mode	67
CAL?	Get calibration status	67
CBM	Perform adjustment with Cal control	67
CBM?	Get Cal control level setting	67
Various	setting and information commands	
BAT?	Get battery status	68
BLA	Set backlight auto turn-off function	68
BLA?	Get backlight auto turn-off setting	68
CLK	Set current year, month, day, hours, minutes	68
CLK?	Get year, month, day, hours, minutes setting	69
CMP	Set comparator level	69
CMP?	Get comparator level	69
DCL	Initialize unit (reset to factory defaults)	69
LTI?	Get elapsed time since start of measurement or memory sto	ore 70
OUT	Set NL-22 / NL-32 output signal output to AC or DC	70
OUT?	Get AC / DC output setting	70
VER?	Get version information	70

Filter commands

OPT	Set optional function	71
OPT?	Get optional function setting	71
FLB	Set center frequency of $1\ /\ 1$ octave and $1\ /\ 3$ octave filter	72
FLB?	Get octave filter setting	73
FLU	Set frequencies for universal filter	73
FLU?	Get universal filter setting	74

Command	d Function	Page
Measure	ement data retrieve commands	
DOD?	Get level value shown on display	75
DOR?	Get data stored in memory	75
DRD?	Set continuous output of sound level or short-term value <i>L</i> e	eq 78
Commu	nication control commands	
BRT	Set baud rate	80
EST?	Get error information	80
IDX	Set index number	80
IDX?	Get index number	80
RET	Set response processing for commands to On or Off	81
RET?	Get response processing setting	81
RMT	Set remote / local mode	81
RMT?	Get remote / local mode setting	81
XON	Select control mode	82
XON?	Get control mode setting	82

Command Format

In this manual, 1 character is represented as " \Box ", a space as "_", parameters as "p1,p2,...", and response data as "d1,d2,...". Parameters and response data may be more than 1 character long.

Commands consists of three letters which are not case-sensitive (upper-case or lower-case can be used).

When a command has one parameter, the parameter follows the command. It can be appended to the command either directly or with a separating space.

$\Box\Box\Box$ p1	Acceptable
□□□_p1	Acceptable

When a command has several parameters, the parameters must be separated by a space.

 $\Box \Box \Box p1_p2$ $\Box \Box Dp1p2$

Acceptable Not acceptable

Note

One command block can only contain one command. Do not include several commands in a block.

A request command consists of the command, any required parameter, and a "?". The command and "?" or parameter and "?" may be separated by a space.

$\Box\Box\Box?$	Acceptable
$\Box\Box\Box_?$	Acceptable
$\Box\Box\Box$ p1?	Acceptable
$\Box\Box\Box$ p1_?	Acceptable

Unless specified otherwise, parameters and response data are of variable length. Depending on the value range, the length of the parameter will differ. There is no need for padding with spaces or other measures.

$\Box\Box\Box_1$	Acceptable
$\Box\Box\Box_10$	Acceptable
	Not acceptable

Command Send Example

To set frequency weighting to "C"

	<stx></stx>	01	С	WGT	1	<etx></etx>	00	<cr><lf></lf></cr>
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

- (1) Start of transfer data and command
- (2) ID number (hexadecimal). The ID number range is 0 to 255. In a command string, this is expressed as 01 (= ID number 1) to FF (= ID number 255).

Note
ID number should be expressed by binary code "01",
not by ASCII code "1".

- (3) Attribute ("C" for command)
- (4) Command
- (5) Parameter (corresponds to p1, p2, etc. in command description section of the manual)
- (6) Command end
- (7) BCC (Entering 00 disables BCC checking for (1) to (6).)
- (8) Transfer data end

Command Description

For details on the transfer format, please refer to page 5.

Basic setting and display commands

BER

Set data exclusion (back-erase) function BER_p1 p1 = 0: Back-erase off p1 = 1: Back-erase on Transfer format: Command block

BER?

Get data exclusion (back-erase) function setting NL-22 / NL-32 response data to BER? Response data d1 d1: Corresponds to p1 Transfer format: Response block

DPI

Set display of various processing values

 $DPIp1_p2$

p1 = 1:	Leq	p1 = 2:	$L_{ m E}$
p1 = 3:	L _{max}	p1 = 4:	L_{\min}
p1 = 5:	$L_{\rm N1}$	p1 = 6:	$L_{\rm N2}$
p1 = 7:	$L_{\rm N3}$	p1 = 8:	$L_{\rm N4}$
p1 = 9:	$L_{\rm N5}$	p1 = 10:	$L_{ m y}$
		(auxiliary p	processing)
p1 = 11:	List	p1 = 12:	Time-Level
p2 = 0:	Off	p2 = 1:	On
Operation:	Sets p1 display to	p2. Toggles	s the On / Off set

Operation: Sets p1 display to p2. Toggles the On / Off setting on the display menu.

Transfer format: Command block

DPI?

Get display setting for various processing values

```
NL-22 / NL-32 response data to DPI?
```

Response data d1,d2,d3,...,dn,...,d12

dn corresponds to pn for the display on/off setting of processing values.

dn = 0: Off (not displayed)dn = 1: On (displayed)

Transfer format: Response block

DSP

Set type of display data

DSPp1			
P1 = 0:	L_p		
p1 = 1:	$L_{ m eq}$	p1 = 2:	$L_{ m E}$
p1 = 3:	L_{\max}	p1 = 4:	L_{\min}
p1 = 5:	$L_{ m N1}$	p1 = 6:	$L_{\rm N2}$
p1 = 7:	$L_{\rm N3}$	p1 = 8:	$L_{ m N4}$
p1 = 9:	$L_{ m N5}$	p1 = 10:	$L_{ m y}$
		(auxiliary	processing)
p1 = 11:	List	p1 = 12:	Time-Level

Transfer format: Command block

DSP?

Get currently displayed processing types NL-22 / NL-32 response data to DSP? Response data d1 d1 = 1 to 12: Displayed processing types Transfer format: Response block

LXI

Set percentile level LXIp1_p2 p1 = 1 to 5: Specify number out of 5 p2 = 1 to 99: Specify percentage Transfer format: Command block

LXI?

Get percentile level settings

NL-22 / NL-32 response data to LXI?
Response data d1,d2,d3,d4,d5: Percentage for five settings d1 to d5: Corresponds to p2
Transfer format: Response block

LYY

Set auxiliary processing type LYYp1 p1 = 0: L_{Ceq} p1 = 1: L_{Cpeak} p1 = 2: L_{peak} p1 = 3: L_{AI} p1 = 4 L_{AIeq} p1 = 5: L_{Atm5} Transfer format: Command block

LYY?

Get auxiliary processing type NL-22 / NL-32 response data to LYY? Response data d1 d1 = 0 to 5: Auxiliary processing type Transfer format: Response block

ΜΤΙ

Set measurement time

MTIp1

p1 = 0	Arbitrary		p1 = 1 to 3	: Not accepted
p1 = 4:	10 sec		p1 = 5:	1 min
p1 = 6:	5 min		p1 = 7:	10 min
p1 = 8:	15 min		p1 = 9:	30 min
p1 = 10:	1 hour		p1 = 11:	8 hour
p1 = 12	24 hour			
C C (0	111	1	

Transfer format: Command block

MTI?

Get measurement time setting

NL-22 / NL-32 response data to MTI? Response data d1 d1: Corresponds to p1

Transfer format: Response block

RNG

Set level range

RNGp1

p1 = 7:	*(10 to 70 dB)	p1 = 8:	20 to 80 dB
p1 = 9:	20 to 90 dB	p1 = 10:	20 to 100 dB
p1 = 11:	20 to 110 dB	p1 = 12:	30 to 120 dB
p1 = 13:	40 to 130 dB		
* is valid o	only if filter (1 / 1	oct, 1 / 3 oc	t, Univ.) is set to On.

Transfer format: Command block

RNG?

Get level range setting NL-22 / NL-32 response to RNG?

Response data d1

d1: Corresponds to p1

Transfer format: Response block

тмс

Set time weighting for main processing TMCp1 p1 = 0: Fast p1 = 1: Slow Transfer format: Command block

TMC?

Get time weighting setting NL-22 / NL-32 response data to TMC? Response data d1 d1: Corresponds to p1 Transfer format: Response block

WGT

Set frequency weighting WGTp1 p1 = 0: A weighting p1 = 1: C weighting p1 = 2: FLAT response Transfer format: Command block

WGT?

Get frequency weighting setting NL-22 / NL-32 response data to WGT? Response data d1 d1: Corresponds to p1 Transfer format: Response block

Operation commands

PSE

Pause / restart measurement and memory store PSEp1

p1 = 0: Restart measurement or memory store

p1 = 1: Pause measurement or memory store

Transfer format: Command block

PSE?

Get measurement and memory store pause status NL-22 / NL-32 response data to PSE? Response data d1 d1: 1 if paused, otherwise 0 Transfer format: Response block

SRT

Start / stop measurement SRTp1 p1 = 0: Stop measurement p1 = 1: Start measurement Transfer format: Command block

SRT?

Get measurement running status

NL-22 / NL-32 response data to SRT?

Response data d1

d1:1 if measurement in progress, otherwise 0Transfer format:Response block

STO

Start memory store

STOp1

When manual store is selected

p1 = 1: Execute store (data number incremented by 1)

When Auto1 or Auto2 store is selected

p1 = 1: Start store

(Use SRT0 to end.)

Transfer format: Command block

STO?

Get memory store running status NL-22 / NL-32 response data to STO? Response data d1 d1 = 0: Memory store not in progress d1 = 1: Memory store in progress Transfer format: Response block

Memory and store commands

ADR

Set address

Valid only in manual store mode. During recall, the command sets the address corresponding to the store mode.

Address setting

ADRp1

p1 = Any address

Transfer format: Command block

ADR?

Get address setting NL-22 / NL-32 response data to ADR? Response data d1 d1: Currently selected address number (displayed address) Transfer format: Response block

CDR?

Get remaining card capacity NL-22 / NL-32 response data to CDR? Response data d1 d1: Card capacity in kByte Transfer format: Response block

CDV?

Verify whether card is inserted NL-22 / NL-32 response data to CDV? Response data d1 d1 = 0: Card not inserted d1 = 1: Card inserted Transfer format: Response block

FMT

Delete all files from memory card No parameter Transfer format: Command block

MDC

Delete manual data from internal memory No parameter Transfer format: Command block

PLP

Set Auto 1 store cycle

PLPp1

p1 = 1:	Not accepted		
p1 = 2:	100 ms	p1 = 3:	200 ms
p1 = 4:	1 sec	p1 = 5:	L _{eq, 1sec}
Transfer format:	Command blo	ock	

PLP?

Get store cycle setting NL-22 / NL-32 response data to PLP? Response data d1 d1: Corresponds to p1 Transfer format: Response block

RCL

Activate recall state

This command immediately calls up the recall screen. The displayed address is the address that was selected when the recall screen was last terminated.

RCLp1_p2

p1 = 0:	Cancel recall mode
p1 = 1:	Activate recall mode
p2:	File name

(Example: AU1_0001; where "AU" is in capitals)

When p1 = 0 or internal manual recall is activated, p2 is disregarded.

- To cancel the recall mode, use RCL0_X (where X is 0000).

- Also for internal manual recall, enter 0000 for p2.

For internal manual data recall, MANUAL is returned. For other card recall, the store name is returned.

Transfer format: Command block

RCL?

Get recall state

NL-22 / NL-32 response data to RCL? Response data d1 d1=0: Not recall state d1=1: Recall state Transfer format: Response block

SMD

Set memory store format (Manu, Auto1, Auto2)

SMDp1

p1 = 0:	Manual	p1 = 1:	Auto 1
p1 = 2:	Auto 2	p1 = 3:	Timer Auto 1
p1 = 4:	Timer Auto 2		
Transfer format:	Command blo	ock	

SMD?

Get memory store setting NL-22 / NL-32 response data to SMD? Response data d1 d1: Corresponds to p1 Transfer format: Response block

SNR?

Get store name shown on recall menu

- No parameter Example: AU1 0001
- Return data format

When there are two or more store data, the names are returned as separate blocks.

When card recall is used and there are no store data, the string "NO FILE NAME" is returned.

Transfer format: Response block

SNS

Set store name

The store mode setting is made with the SMD command.

SNSp1

p1 = 0000 to 9999

Takes a 4-digit integer. If a string other than a 4-digit integer is specified, an error (0002) is returned.

If the same store name already exists on the card, an error (0004) is returned (the setting is effective).

Transfer format: Command block

SNS?

Get store name

SNS?

d1 = p1

Example: 0010 ("0010" part of "AU1_0010")

Transfer format: Response block

ТМТ

Set timer mode time

TMTp1_p2_p3_p4_p5_p6_p7_p8_p9			
p1:	Start month	p2:	Start day
p3:	Start hours	p4:	Start minutes
p5:	End month	p6:	End day
p7:	End hours	p8:	End minutes
p9:	Interval time		
	p9 = 0: Off	1: 5 min	2: 10 min
	3: 15 min	4: 30 min	5: 1 hour
Transfer format:	Command blo	vek	

Transfer format: Command block

TMT?

Get timer mode time setting

NL-22 / NL-32 response data to TMT? Response data d1,d2,d3,d4,d5,d6,d7,d8,d9 d1 to d9: Correspond to p1 to p9 Transfer format: Response block

Calibration commands

CAL

Activate calibration mode

CALp1	
p1 = 0:	Cancel calibration mode
p1 = 1:	Internal calibration mode
p1 = 2:	External calibration mode
Transfer format:	Command block

CAL?

Get calibration status

NL-22 / NL-32 response data to CAL?

Response data d1

d1:	Corresponds to p1
d1 = 1:	Internal calibration mode
d1 = 2:	External calibration mode
d1 = 0:	Other mode
Transfer format:	Response block

CBM

Perform adjustment with Cal controlCBMp1p1 = 0:Reduce level settingp1 = 1:Increase level settingTransfer format:Command block

CBM?

Get Cal control level setting NL-22 / NL-32 response data to CBM? Response data d1 p1 = 118 to 670 (irregular steps) Transfer format: Response block

Various setting and information commands

BAT?

Get battery status NL-22 / NL-32 response data to BAT? Response data d1 d1 = 0: Battery indicator flashing

Transfer format: Response block

BLA

Set backlight auto turn-off function

BLAp1

p1 = 0:	Disable
p1 = 1:	Enable
Transfer format:	Command block

BLA?

Get backlight auto turn-off setting

NL-22 / NL-32 response data to BLA? Response data d1 d1: Corresponds to p1 Transfer format: Response block

CLK

Set current year, month, day, hours, minutes

CLKp1_p2_p3_p4_p5_p6

p1:	4-digit year	p2:	month
p3:	day	p4:	hours
p5:	minutes	p6:	seconds
1 can also be specified as 01.			
nafor form	ast: Command	alaal	

Transfer format: Command block

CLK?

Get year, month, day, hours, minutes setting NL-22 / NL-32 response data to CLK? Response data d1,d2,d3,d4,d5,d6 d1 to d6: Correspond to p1 to p6 1 is returned as 01. Transfer format: Response block

CMP

Set comparator level CMPp1 p1: 0 or 30 to 130 in 1-dB steps 0 means that comparator is disabled. Transfer format: Command block

CMP?

Get comparator level NL-22 / NL-32 response data to CMP? Response data d1 d1: Corresponds to p1 (comparator level setting) Transfer format: Response block

DCL

Initialize unit (reset to factory defaults)

- Clock is not reset.
- Contents of manual store memory are not cleared.
- Option function setting is not changed.
- No parameter

Transfer format: Command block

LTI?

Get elapsed time since start of measurement or memory store

NL-22 / NL-32 response data to LTI?

Response data d1,d2,d3

- d1: Hours
- d2: Minutes
- d3: Seconds

Maximum: 200:00:00

Transfer format: Response block

OUT

Set NL-22 / NL-32 output signal output to AC or DC OUTp1 p1 = 0: AC OUT p1 = 1: DC OUT Transfer format: Command block

OUT?

Get AC / DC output setting NL-22 / NL-32 response data to OUT? Response data d1 d1: Corresponds to p1 Transfer format: Response block

VER?

Get version information

NL-22 / NL-32 response data to VER?

Response data d1,d2

- d1: Sound level meter model Example: NL-22
- d2: Software version Example: 1.00

Transfer format: Response block

Filter commands

ΟΡΤ

Set optional function

OPTp1

p1 = 0:	No optional functions
p1 = 1:	1 / 1 octave filter
p1 = 2:	1 / 3 octave filter
p1 = 3:	Universal filter
Transfer format:	Command block

OPT?

Get optional function setting NL-22 / NL-32 response data to OPT? Response data d1 d1: Corresponds to p1 Transfer format: Response block

FLB

Set center frequency of 1 / 1 octave and 1 / 3 octave filter

This command is only accepted when bandpass filter option is enabled.

FLBp1

1 / 1 octave filter

łz
Z
Z

1 / 3 octave filter

p1 = 0:	All-pass (no filt	ering)	
p1 = 1:	Not accepted	p1 = 2:	12.5 Hz
p1 = 3:	16 Hz	p1 = 4:	20 Hz
p1 = 5:	25 Hz	p1 = 6:	31.5 Hz
p1 = 7:	40 Hz	p1 = 8:	50 Hz
p1 = 9:	63 Hz	p1 = 10:	80 Hz
p1 = 11:	100 Hz	p1 = 12:	125 Hz
p1 = 13:	160 Hz	p1 = 14:	200 Hz
p1 = 15:	250 Hz	p1 = 16:	315 Hz
p1 = 17:	400 Hz	p1 = 18:	500 Hz
p1 = 19:	630 Hz	p1 = 20:	800 Hz
p1 = 21:	1 kHz	p1 = 22:	1.25 kHz
p1 = 23:	1.6 kHz	p1 = 24:	2 kHz
p1 = 25:	2.5 kHz	p1 = 26:	3.15 kHz
p1 = 27:	4 kHz	p1 = 28:	5 kHz
p1 = 29:	6.3 kHz	p1 = 30:	8 kHz
p1 = 31:	10 kHz	p1 = 32:	12.5 kHz
p1 = 33:	16 kHz		

Transfer format: Command block

FLB?

Get octave filter setting Response data d1 d1: Corresponds to p1 Transfer format: Response block

FLU

Set frequencies for universal filter

This command is only accepted when bandpass filter option is enabled.

p1 is lower limit frequency, p2 is upper limit frequency.

FULp1,p2

p1 = 0:	None	p1 = 1:	10 Hz
p1 = 2:	12.5 Hz	p1 = 3:	16 Hz
p1 = 4:	20 Hz	p1 = 5:	25 Hz
p1 = 6:	31.5 Hz	p1 = 7:	40 Hz
p1 = 8:	50 Hz	p1 = 9:	63 Hz
p1 = 10:	80 Hz	p1 = 11:	100 Hz
p1 = 12:	125 Hz	p1 = 13:	160 Hz
p1 = 14:	200 Hz	p1 = 15:	250 Hz
p1 = 16:	315 Hz	p1 = 17:	400 Hz
p1 = 18:	500 Hz	p1 = 19:	630 Hz
p1 = 20:	800 Hz	p1 = 21:	1 kHz
p1 = 22:	1.25 kHz	p1 = 23:	1.6 kHz
p1 = 24:	2 kHz	p1 = 25:	2.5 kHz
p1 = 26:	3.15 kHz	p1 = 27:	4 kHz
p1 = 28:	5 kHz	p1 = 29:	6.3 kHz
p1 = 30:	8 kHz	p1 = 31:	10 kHz
p1 = 32:	12.5 kHz		

FLU?

Get universal filter setting NL-22 / NL-32 response data to FLU? Response data d1,d2 d1,d2: Correspond to p1,p2 Transfer format: Response block

Measurement data retrieve commands

DOD?

Get level value shown on display

DODp1?

p1 omitted: Get data shown on screen

p1 = 0:	L_p (sound level)	p1 = 1:	L _{eq}
p1 = 2:	$L_{ m E}$	p1 = 3:	L _{max}
p1 = 4:	L_{\min}	p1 = 5:	$L_{\rm N1}$
p1 = 6:	$L_{\rm N2}$	p1 = 7:	$L_{\rm N3}$
p1 = 8:	$L_{ m N4}$	p1 = 9:	$L_{\rm N5}$
p1 = 10:	$L_{\rm y}$ (selected auxi	liary process	sing value)

Response data d1,d2,d3

d1:	Level value
d2:	Over-range information (yes: 1, no: 0)
d3:	Under-range information (yes: 1, no: 0)
Transfer format:	Response block

DOR?

Get data stored in memory

DORp1?

1 to 100 when stored in manual mode (not significant)

When Auto 1: 1 to 7200000 (specifying the number of requested data)

When Auto 2: 1 to 99999 (specifying the number of requested data)

When manual store

d1,d2 ... d16

d1:	L_p		
d2:	Sound level ove	r-range info	ormation (yes: 1, no: 0)
d3:	Sound level und	ler-range inf	formation (yes: 1, no: 0)
d4:	$L_{ m eq}$	d5:	$L_{ m E}$
d6:	L _{max}	d7:	L_{\min}
d8:	$L_{\rm N1}$	d9:	L _{N2}
d10:	L _{N3}	d11:	$L_{ m N4}$
d12:	L _{N5}		
d13:	$L_{\rm y}$ (0.0 if no data	a)	

11 4	D .	· · ·	(1 0)
d1/1.	Urococcing over range	intormation	$1 \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}$
d14:	Processing over-range	/ IIIIOIIIIauoii	1×0.5 . 1. 10.01
	0 0		())

- d15: Processing under-range information (yes: 1, no: 0)
- d16: Processing pause information (yes: 1, no: 0)

Auto 1 store

d1	,d2,	d3	,d4
u 1	, <u>u</u> _,	,us	,

d1:	Level value
d2:	Over-range information (yes: 1, no: 0)
d3:	Under-range information (yes: 1, no: 0)
d4:	Pause information (yes: 1, no: 0)

DORp1? additional info

Auto1 store mode

In Auto1 store mode, a maximum of 22 data are sent in one response block. For example, when DOR23? is sent from the computer, the response data will look as shown in the example below. The data for one address contain the d1 sound level (fixed to 5 bytes; padded with a space if there is no 100 dB digit), followed by one byte each for d2, d3, and d4. Data are delimited by 1-byte commas. Therefore the total length of one address is 11 bytes (fixed). Data for the next address follow without delimiter.

Auto 2 store			
d1,d2, d17			
d1:	Data number (1	to 99999)	
d2:	Measurement sta	art date (4-di	igit year/month/day)
d3:	Measurement sta	art time (hou	rs:minutes:seconds)
d4:	Measurement time (hours:minutes:seconds)		
d5:	$L_{ m eq}$	d6:	$L_{ m E}$
d7:	L _{max}	d8:	L_{\min}
d9:	$L_{ m N1}$	d10:	$L_{\rm N2}$
d 11:	L _{N3}	d12:	L _{N4}
d13:	L _{N5}		
d14:	$L_{\rm y}$ (0.0 if no data	l)	
d15:	Processing over-	range inform	nation (yes: 1, no: 0)
d16:	Processing under	r-range info	rmation (yes: 1, no: 0)
d17:	Processing pause	e informatio	n (yes: 1, no: 0)
Transfer format:	Response blo	ck	

DRD?

Set continuous output of sound level or short-term value *L*_{eq} DRDp1?

DRDp1				
p1 = 1:	100 msec	p1 = 2:	200 msec	
p1 = 3:	1 sec	p1 = 4:	$L_{\rm eq, \ 1 \ sec}$	
p1 = 5:	100 msec (L_{ps}	, $L_{\rm eq}, L_{\rm max}, L_{\rm m}$	$_{\rm nin}, L_{\rm y})$	
Response dat	a format			
For response	data $p1 = 1$ to 4			
d1,d2,d3				
d1:	XXX.X (leve	l value)		
d2:	Over-range in	formation (ye	es: 1, no: 0)	
d3:	Under-range	Under-range information (yes: 1, no: 0)		
For response	data p1 = 5			
d1,d2,d3,d4,d	15,d6,d7			
d1:	XXX.X L_p va	alue (instantar	neous value)	
d2:	XXX.X L_{eq} for	or 100 msec i	nterval	
d3:	XXX.X L _{max}	for 100 msec	interval	
d4:	XXX.X L _{min}	for 100 msec	interval	
d5.	XXX X auxil	iary processir	or value for 100 mse	

- d5: XXX.X auxiliary processing value for 100 msec interval ("-.-" if not selected)
- d6: Over-range information (yes: 1, no: 0)
- d7: Under-range information (yes: 1, no: 0)

Transfer format: Response block

When auxiliary processing is set to "On" on the menu screen, one of the following processing values is output, depending on the selected processing type.

LCeq:	LCeq for every 100 msec ("" if C weighting is
	selected for main processing)
Lpeak:	Lpeak for every 100 msec
LCpeak:	LCpeak for every 100 msec
LAtm5:	LAmax for every 100 msec ("" if setting other than A
	weighting is selected for main processing)
LAI:	LAI for every 100 msec ("" if setting other than A
	weighting is selected for main processing)

LAIeq: LAIeq for every 100 ms ("-.-" if setting other than A weighting is selected for main processing)

Important

Do not use the DRD command during Auto store. While data are being sent with the DRD command, the interval between sending commands must be at least 1 second.

Communication control commands

BRT

Set baud rate

BRTp1

p1 = 2: 4800 bps

p1 = 3: 9600 bps

p1 = 4: 19200 bps

The baud rate setting is changed after a confirmation response. Transfer format: Command block

EST?

Get error information

NL-22 / NL-32 response data to EST?

Response data d1

d1: Error processing or command processing error (see page 9)

(see page 9)

Recorded 4-digit error code

Transfer format: Response block

IDX

Set index number IDXp1 p1 = 1 to 255, default: 1 Transfer format: Command block

IDX?

Get index number NL-22 / NL-32 response data to IDX? Response data d1 d1 = Corresponds to p1 (selected index number) Transfer format: Response block

RET

Set response processing for commands to On or Off RETp1 p1 = 0: Disable response processing p1 = 1: Enable response processing Transfer format: Command block

RET?

Get response processing setting NL-22 / NL-32 response data to RET? Response data d1 d1: Corresponds to p1 Transfer format: Response block

RMT

Set remote / local mode RMTp1 p1 = 0: Set to local mode p1 = 1: Set to remote mode Transfer format: Command block

RMT?

Get remote / local mode setting NL-22 / NL-32 response data to RMT? Response data d1 d1: Corresponds to p1 Transfer format: Response block

XON

Select control mode

XONp1

- p1 = 0: Use RTS / CTS control (no X parameter control)
- p1 = 1: Use X parameter control

(no RTS / X parameter control)

Transfer format: Command block

XON?

Get control mode setting

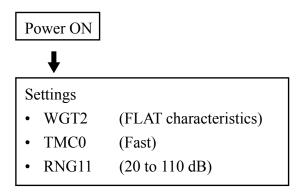
NL-22 / NL-32 response data to XON?

Response data d1

d1: Corresponds to p1

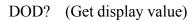
Transfer format: Response block

Examples for Control Via External Commands

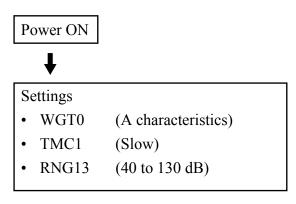

This section contains several examples for controlling operation of the sound level meter via commands. Some initial steps are common to all operations:

- Check baud rate setting
- Check index number
- Enable or disable response sequence (with RET command)
- Select X parameter or RTS / CTS control (with XON command)

To check whether a setting was made properly, using a request command after sending a setting command is recommended.


Example: Get sound pressure level (sound exposure level)

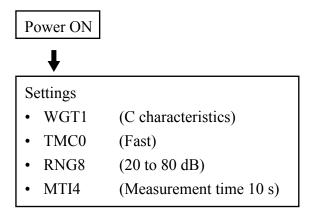
(Measured with frequency weighting "FLAT", dynamic characteristics "Fast", level range "20 to 110 dB")


Establish above settings to prepare sound level meter for measurement

↓

Example: Get sound pressure level (continuous)

(Measured with frequency weighting "A", dynamic characteristics "Slow", level range "40 to 130 dB")


Establish above settings to prepare sound level meter for measurement

↓ (For continuous output at 100 ms intervals)

DRD1? (Stop with <SUB>)

Example: *L*_{eq} measurement (sound exposure level)

(Measured with frequency weighting "C", dynamic characteristics "Fast", level range "20 to 80 dB", measurement time "10 s")

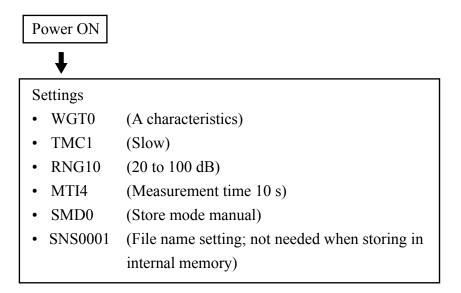
ł

DPI1_1 (Set *L*_{eq} to On. "_" shows space)

ł

DSP1 (Show *L*_{eq} value on display)

↓

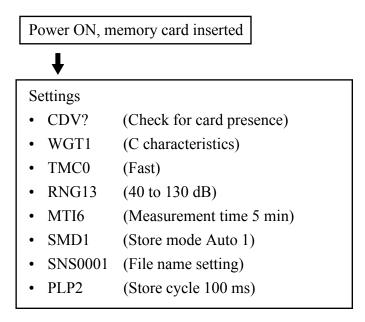

SRT1 (Start processing)

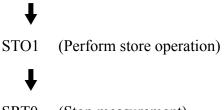
(Waiting for measurement end, or stopped by SRT0)

DOD? (Get display value)

Manual store example

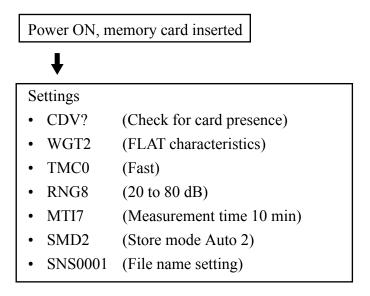
(Measured with frequency weighting "A", dynamic characteristics "Slow", file name "MAN_0001" [when storing on memory card], processing time "10 s", level range "20 to 100 dB")

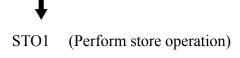

Establish above settings to prepare sound level meter for manual store operation


TO1 (Perform store operation. Data are stored and address is incremented by one.)

Auto 1 store example

(Measured with frequency weighting "C", dynamic characteristics "Fast", file name "AU1_0001", store cycle "100 ms", measurement time "5 min", level range "40 to 130 dB")

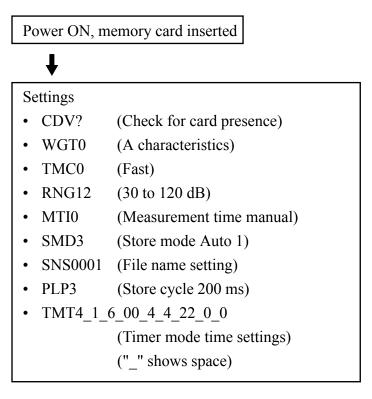

Establish above settings to prepare sound level meter for Auto 1 operation


SRT0 (Stop measurement)

Auto 2 store example

(Measured with frequency weighting "FLAT", dynamic characteristics "Fast", file name "AU2_0001", measurement time "10 min", level range "20 to 80 dB")

Establish above settings to prepare sound level meter for Auto 2 operation

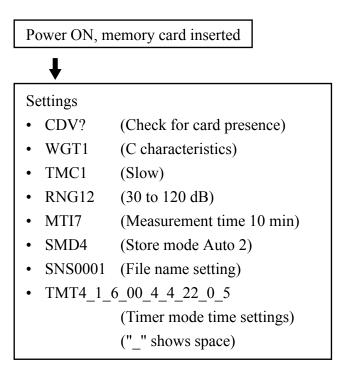


SRT0 (Stop measurement)

T

Auto 1 timer mode store example

(Measured with frequency weighting "A", dynamic characteristics "Fast", file name "AU1_0001", store cycle "200 ms", measurement time "manual", level range "30 to 120 dB", measurement start time "04/01, 6:00", measurement end time "4/4, 22:00", interval time "Off")


Establish above settings to prepare sound level meter for Auto 1 timer mode operation

₽

STO1 (Perform store operation)

Auto 2 timer mode store example

(Measured with frequency weighting "C", dynamic characteristics "Slow", file name "AU2_0001", measurement time "10 min", level range "30 to 120 dB", measurement start time "04/01, 6:00", measurement end time "4/4, 22:00", interval time "1 h")

Establish above settings to prepare sound level meter for Auto 2 timer mode operation

ł

STO1 (Perform store operation)

No. 33632 05-09